TY - BOOK AU - National Research Council A2 - Maureen Mellody TI - Novel Processes for Advanced Manufacturing: Summary of a Workshop SN - DO - 10.17226/18345 PY - 2013 UR - https://nap.nationalacademies.org/catalog/18345/novel-processes-for-advanced-manufacturing-summary-of-a-workshop PB - The National Academies Press CY - Washington, DC LA - English KW - Engineering and Technology AB - The Standing Committee on Defense Materials Manufacturing and Infrastructure (the DMMI standing committee) of the National Materials and Manufacturing Board of the National Research Council (NRC) held a workshop on December 5 and 6, 2012, to discuss new and novel processes in industrial modernization. The participants of the workshop provided their individual opinions but no recommendations were developed as a result of the workshop. The workshop focused on Additive manufacturing, electromagnetic field manipulation of materials, and design of materials. Additive manufacturing is the process of making three-dimensional objects from a digital description or file. The workshop addresses different aspects of additive manufacturing including surface finish and access to manufacturing capabilities and resources. Electromagnetic field manipulation of materials is the use of electric and/or magnetic fields to change the mechanical or functional properties of a material or for the purposes of sintering. The workshop examined research prioritization in this area as well as other objectives. "Design of materials" refers to the application of computational and analytic methods to materials to obtain a desired material characteristic; the workshop features a discussion on materials genomics in this area and more. Novel Processes for Advanced Manufacture: Summary of a Workshop presents a summarization of the key points of this workshop and includes outlines of the open discussions on each area. ER - TY - BOOK AU - National Academy of Engineering TI - Messaging for Engineering: From Research to Action SN - DO - 10.17226/13463 PY - 2013 UR - https://nap.nationalacademies.org/catalog/13463/messaging-for-engineering-from-research-to-action PB - The National Academies Press CY - Washington, DC LA - English KW - Engineering and Technology AB - For those in the broad engineering community--those who employ, work with, and/or educate engineers, and engineers themselves--there is no need to explain the importance and value of engineering. They understand that engineers help make the world a better place for all, that they regularly grapple with important societal and environmental issues, and that the engineering process is every bit as creative as composing a symphony or crafting a piece of art. But the situation outside the engineering community is quite different. Studies have shown that most K-12 students and teachers have a limited appreciation of all the ways that engineering makes their lives better and, furthermore, that they have little understanding of what engineers do or of the opportunities that an engineering education offers. Messaging for Engineering supports efforts by the engineering community to communicate more effectively about the profession and those who practice it. This report builds on the 2008 NAE publication, Changing the Conversation: Messages for Improving Public Understanding of Engineering (CTC), which presented the results of a research-based effort to develop and test new, more effective messages about engineering. The new messages cast engineering as inherently creative and concerned with human welfare, as well as an emotionally satisfying calling. This report summarizes progress in implementing the CTC messages, but also recognizes that there is potential to galvanize additional action and thus suggests specific steps for major players in the engineering community to continue and build on progress to date. Many of the report's recommendations resulted from discussion at a December 2010 committee workshop that involved several dozen high-level decision makers representing key stakeholder groups in the engineering community. ER - TY - BOOK AU - National Research Council TI - Research Progress on Environmental, Health, and Safety Aspects of Engineered Nanomaterials SN - DO - 10.17226/18475 PY - 2013 UR - https://nap.nationalacademies.org/catalog/18475/research-progress-on-environmental-health-and-safety-aspects-of-engineered-nanomaterials PB - The National Academies Press CY - Washington, DC LA - English KW - Engineering and Technology KW - Environment and Environmental Studies AB - Despite the increase in funding for research and the rising numbers of peer-reviewed publications over the past decade that address the environmental, health, and safety aspects of engineered nanomaterials (ENMs), uncertainty about the implications of potential exposures of consumers, workers, and ecosystems to these materials persists. Consumers and workers want to know which of these materials they are exposed to and whether the materials can harm them. Industry is concerned about being able to predict with sufficient certainty whether products that it makes and markets will pose any environmental, health or safety issues and what measures should be taken regarding manufacturing practices and worldwide distribution to minimize any potential risk. However, there remains a disconnect between the research that is being carried out and its relevance to and use by decision-makers and regulators to make informed public health and environmental policy and regulatory decisions. Research Progress on Environmental, Health, and Safety Aspects of Nanomaterials evaluates research progress and updates research priorities and resource estimates on the basis of results of studies and emerging trends in the nanotechnology industry. This report follows up the 2012 report A Research Strategy for Environmental, Health, and Safety Aspects of Engineered Nanomaterials, which presented a strategic approach for developing the science and research infrastructure needed to address uncertainties regarding the potential environmental, health, and safety risks posed by ENMs. This new report looks at the state of nanotechnology research, examines market and regulatory conditions and their affect on research priorities, and considers the criteria for evaluating research progress on the environmental, health, and safety aspects of nanotechnology. ER - TY - BOOK AU - National Research Council TI - Assessment of Advanced Solid-State Lighting SN - DO - 10.17226/18279 PY - 2013 UR - https://nap.nationalacademies.org/catalog/18279/assessment-of-advanced-solid-state-lighting PB - The National Academies Press CY - Washington, DC LA - English KW - Energy and Energy Conservation KW - Engineering and Technology AB - The standard incandescent light bulb, which still works mainly as Thomas Edison invented it, converts more than 90% of the consumed electricity into heat. Given the availability of newer lighting technologies that convert a greater percentage of electricity into useful light, there is potential to decrease the amount of energy used for lighting in both commercial and residential applications. Although technologies such as compact fluorescent lamps (CFLs) have emerged in the past few decades and will help achieve the goal of increased energy efficiency, solid-state lighting (SSL) stands to play a large role in dramatically decreasing U.S. energy consumption for lighting. This report summarizes the current status of SSL technologies and products—light-emitting diodes (LEDs) and organic LEDs (OLEDs)—and evaluates barriers to their improved cost and performance. Assessment of Advanced Solid State Lighting also discusses factors involved in achieving widespread deployment and consumer acceptance of SSL products. These factors include the perceived quality of light emitted by SSL devices, ease of use and the useful lifetime of these devices, issues of initial high cost, and possible benefits of reduced energy consumption. ER - TY - BOOK AU - National Research Council TI - Optics and Photonics: Essential Technologies for Our Nation SN - DO - 10.17226/13491 PY - 2013 UR - https://nap.nationalacademies.org/catalog/13491/optics-and-photonics-essential-technologies-for-our-nation PB - The National Academies Press CY - Washington, DC LA - English KW - Engineering and Technology KW - Math, Chemistry, and Physics AB - Optics and photonics technologies are ubiquitous: they are responsible for the displays on smart phones and computing devices, optical fiber that carries the information in the internet, advanced precision manufacturing, enhanced defense capabilities, and a plethora of medical diagnostics tools. The opportunities arising from optics and photonics offer the potential for even greater societal impact in the next few decades, including solar power generation and new efficient lighting that could transform the nation's energy landscape and new optical capabilities that will be essential to support the continued exponential growth of the Internet. As described in the National Research Council report Optics and Photonics: Essential Technologies for our Nation, it is critical for the United States to take advantage of these emerging optical technologies for creating new industries and generating job growth. The report assesses the current state of optical science and engineering in the United States and abroad—including market trends, workforce needs, and the impact of photonics on the national economy. It identifies the technological opportunities that have arisen from recent advances in, and applications of, optical science and engineering. The report also calls for improved management of U.S. public and private research and development resources, emphasizing the need for public policy that encourages adoption of a portfolio approach to investing in the wide and diverse opportunities now available within photonics. Optics and Photonics: Essential Technologies for our Nation is a useful overview not only for policymakers, such as decision-makers at relevant Federal agencies on the current state of optics and photonics research and applications but also for individuals seeking a broad understanding of the fields of optics and photonics in many arenas. ER - TY - BOOK AU - Transportation Research Board AU - National Research Council TI - Overcoming Barriers to Electric-Vehicle Deployment: Interim Report SN - DO - 10.17226/18320 PY - 2013 UR - https://nap.nationalacademies.org/catalog/18320/overcoming-barriers-to-electric-vehicle-deployment-interim-report PB - The National Academies Press CY - Washington, DC LA - English KW - Engineering and Technology KW - Energy and Energy Conservation AB - The electric vehicle offers many promises—increasing U.S. energy security by reducing petroleum dependence, contributing to climate-change initiatives by decreasing greenhouse gas (GHG) emissions, stimulating long-term economic growth through the development of new technologies and industries, and improving public health by improving local air quality. There are, however, substantial technical, social, and economic barriers to widespread adoption of electric vehicles, including vehicle cost, small driving range, long charging times, and the need for a charging infrastructure. In addition, people are unfamiliar with electric vehicles, are uncertain about their costs and benefits, and have diverse needs that current electric vehicles might not meet. Although a person might derive some personal benefits from ownership, the costs of achieving the social benefits, such as reduced GHG emissions, are borne largely by the people who purchase the vehicles. Given the recognized barriers to electric-vehicle adoption, Congress asked the Department of Energy (DOE) to commission a study by the National Academies to address market barriers that are slowing the purchase of electric vehicles and hindering the deployment of supporting infrastructure. As a result of the request, the National Research Council (NRC)—a part of the National Academies—appointed the Committee on Overcoming Barriers to Electric-Vehicle Deployment. This committee documented their findings in two reports—a short interim report focused on near-term options, and a final comprehensive report. Overcoming Barriers to Electric-Vehicle Deployment fulfills the request for the short interim report that addresses specifically the following issues: infrastructure needs for electric vehicles, barriers to deploying the infrastructure, and possible roles of the federal government in overcoming the barriers. This report also includes an initial discussion of the pros and cons of the possible roles. This interim report does not address the committee's full statement of task and does not offer any recommendations because the committee is still in its early stages of data-gathering. The committee will continue to gather and review information and conduct analyses through late spring 2014 and will issue its final report in late summer 2014. Overcoming Barriers to Electric-Vehicle Deployment focuses on the light-duty vehicle sector in the United States and restricts its discussion of electric vehicles to plug-in electric vehicles (PEVs), which include battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). The common feature of these vehicles is that their batteries are charged by being plugged into the electric grid. BEVs differ from PHEVs because they operate solely on electricity stored in a battery (that is, there is no other power source); PHEVs have internal combustion engines that can supplement the electric power train. Although this report considers PEVs generally, the committee recognizes that there are fundamental differences between PHEVs and BEVs. ER - TY - BOOK AU - National Academy of Sciences AU - National Academy of Engineering AU - Institute of Medicine A2 - Steve Olson A2 - Maria Dahlberg TI - Trends in the Innovation Ecosystem: Can Past Successes Help Inform Future Strategies? Summary of Two Workshops SN - DO - 10.17226/18509 PY - 2013 UR - https://nap.nationalacademies.org/catalog/18509/trends-in-the-innovation-ecosystem-can-past-successes-help-inform PB - The National Academies Press CY - Washington, DC LA - English KW - Engineering and Technology KW - Policy for Science and Technology AB - Innovation has been a major engine of American economic and societal progress. It has increased per capita income more than sevenfold since the 19th century, has added three decades to the average lifespan, has revolutionized the way we communicate and share information, and has made the United States the strongest military power in the world. Without its historical leadership in innovation, the United States would be a very different country than it is today. Trends in the Innovation Ecosystem is the summary of two workshops hosted by the Committee on Science, Engineering, and Public Policy (COSEPUP) of the National Academy of Sciences, National Academy of Engineering, and Institute of Medicine in February and May, 2013. Experts from industry, academia, and finance met to discuss the challenges involved in innovation pathways. Both workshops focused on the interactions between research universities and industry and the concept of innovation as a "culture" as opposed to an operational method. The goal was to gain a better understanding of what key factors contributed to successful innovations in the past, how today's environment might necessitate changes in strategy, and what changes are likely to occur in the future in the context of a global innovation ecosystem. This report discusses the state of innovation in America, obstacles to both innovation and to reaping the benefits of innovation, and ways of overcoming those obstacles. ER - TY - BOOK AU - National Research Council TI - Making the Soldier Decisive on Future Battlefields SN - DO - 10.17226/18321 PY - 2013 UR - https://nap.nationalacademies.org/catalog/18321/making-the-soldier-decisive-on-future-battlefields PB - The National Academies Press CY - Washington, DC LA - English KW - Conflict and Security Issues KW - Engineering and Technology AB - The U.S. military does not believe its soldiers, sailors, airmen, and marines should be engaged in combat with adversaries on a "level playing field." Our combat individuals enter engagements to win. To that end, the United States has used its technical prowess and industrial capability to develop decisive weapons that overmatch those of potential enemies. In its current engagement—what has been identified as an "era of persistent conflict"— the nation's most important weapon is the dismounted soldier operating in small units. Today's soldier must be prepared to contend with both regular and irregular adversaries. Results in Iraq and Afghanistan show that, while the U.S. soldier is a formidable fighter, the contemporary suite of equipment and support does not afford the same high degree of overmatch capability exhibited by large weapons platforms—yet it is the soldier who ultimately will play the decisive role in restoring stability. Making the Soldier Decisive on Future Battlefields establishes the technical requirements for overmatch capability for dismounted soldiers operating individually or in small units. It prescribes technological and organizational capabilities needed to make the dismounted soldier a decisive weapon in a changing, uncertain, and complex future environment and provides the Army with 15 recommendations on how to focus its efforts to enable the soldier and tactical small unit (TSU) to achieve overmatch. ER -