%0 Book %A Institute of Medicine %T Health IT and Patient Safety: Building Safer Systems for Better Care %@ 978-0-309-22112-2 %D 2012 %U https://nap.nationalacademies.org/catalog/13269/health-it-and-patient-safety-building-safer-systems-for-better %> https://nap.nationalacademies.org/catalog/13269/health-it-and-patient-safety-building-safer-systems-for-better %I The National Academies Press %C Washington, DC %G English %K Computers and Information Technology %K Health and Medicine %P 234 %X IOM's 1999 landmark study To Err is Human estimated that between 44,000 and 98,000 lives are lost every year due to medical errors. This call to action has led to a number of efforts to reduce errors and provide safe and effective health care. Information technology (IT) has been identified as a way to enhance the safety and effectiveness of care. In an effort to catalyze its implementation, the U.S. government has invested billions of dollars toward the development and meaningful use of effective health IT. Designed and properly applied, health IT can be a positive transformative force for delivering safe health care, particularly with computerized prescribing and medication safety. However, if it is designed and applied inappropriately, health IT can add an additional layer of complexity to the already complex delivery of health care. Poorly designed IT can introduce risks that may lead to unsafe conditions, serious injury, or even death. Poor human-computer interactions could result in wrong dosing decisions and wrong diagnoses. Safe implementation of health IT is a complex, dynamic process that requires a shared responsibility between vendors and health care organizations. Health IT and Patient Safety makes recommendations for developing a framework for patient safety and health IT. This book focuses on finding ways to mitigate the risks of health IT-assisted care and identifies areas of concern so that the nation is in a better position to realize the potential benefits of health IT. Health IT and Patient Safety is both comprehensive and specific in terms of recommended options and opportunities for public and private interventions that may improve the safety of care that incorporates the use of health IT. This book will be of interest to the health IT industry, the federal government, healthcare providers and other users of health IT, and patient advocacy groups. %0 Book %A National Research Council %E Uhlir, Paul E. %T For Attribution: Developing Data Attribution and Citation Practices and Standards: Summary of an International Workshop %@ 978-0-309-26728-1 %D 2012 %U https://nap.nationalacademies.org/catalog/13564/for-attribution-developing-data-attribution-and-citation-practices-and-standards %> https://nap.nationalacademies.org/catalog/13564/for-attribution-developing-data-attribution-and-citation-practices-and-standards %I The National Academies Press %C Washington, DC %G English %K Computers and Information Technology %K Policy for Science and Technology %P 238 %X The growth of electronic publishing of literature has created new challenges, such as the need for mechanisms for citing online references in ways that can assure discoverability and retrieval for many years into the future. The growth in online datasets presents related, yet more complex challenges. It depends upon the ability to reliably identify, locate, access, interpret, and verify the version, integrity, and provenance of digital datasets. Data citation standards and good practices can form the basis for increased incentives, recognition, and rewards for scientific data activities that in many cases are currently lacking in many fields of research. The rapidly-expanding universe of online digital data holds the promise of allowing peer-examination and review of conclusions or analysis based on experimental or observational data, the integration of data into new forms of scholarly publishing, and the ability for subsequent users to make new and unforeseen uses and analyses of the same data-either in isolation, or in combination with, other datasets. The problem of citing online data is complicated by the lack of established practices for referring to portions or subsets of data. There are a number of initiatives in different organizations, countries, and disciplines already underway. An important set of technical and policy approaches have already been launched by the U.S. National Information Standards Organization (NISO) and other standards bodies regarding persistent identifiers and online linking. The workshop summarized in For Attribution -- Developing Data Attribution and Citation Practices and Standards: Summary of an International Workshop was organized by a steering committee under the National Research Council's (NRC's) Board on Research Data and Information, in collaboration with an international CODATA-ICSTI Task Group on Data Citation Standards and Practices. The purpose of the symposium was to examine a number of key issues related to data identification, attribution, citation, and linking to help coordinate activities in this area internationally, and to promote common practices and standards in the scientific community. %0 Book %A National Research Council %E Uhlir, Paul F. %T The Future of Scientific Knowledge Discovery in Open Networked Environments: Summary of a Workshop %@ 978-0-309-26791-5 %D 2012 %U https://nap.nationalacademies.org/catalog/18258/the-future-of-scientific-knowledge-discovery-in-open-networked-environments %> https://nap.nationalacademies.org/catalog/18258/the-future-of-scientific-knowledge-discovery-in-open-networked-environments %I The National Academies Press %C Washington, DC %G English %K Policy for Science and Technology %K Computers and Information Technology %P 200 %X Digital technologies and networks are now part of everyday work in the sciences, and have enhanced access to and use of scientific data, information, and literature significantly. They offer the promise of accelerating the discovery and communication of knowledge, both within the scientific community and in the broader society, as scientific data and information are made openly available online. The focus of this project was on computer-mediated or computational scientific knowledge discovery, taken broadly as any research processes enabled by digital computing technologies. Such technologies may include data mining, information retrieval and extraction, artificial intelligence, distributed grid computing, and others. These technological capabilities support computer-mediated knowledge discovery, which some believe is a new paradigm in the conduct of research. The emphasis was primarily on digitally networked data, rather than on the scientific, technical, and medical literature. The meeting also focused mostly on the advantages of knowledge discovery in open networked environments, although some of the disadvantages were raised as well. The workshop brought together a set of stakeholders in this area for intensive and structured discussions. The purpose was not to make a final declaration about the directions that should be taken, but to further the examination of trends in computational knowledge discovery in the open networked environments, based on the following questions and tasks: 1. Opportunities and Benefits: What are the opportunities over the next 5 to 10 years associated with the use of computer-mediated scientific knowledge discovery across disciplines in the open online environment? What are the potential benefits to science and society of such techniques? 2. Techniques and Methods for Development and Study of Computer-mediated Scientific Knowledge Discovery: What are the techniques and methods used in government, academia, and industry to study and understand these processes, the validity and reliability of their results, and their impact inside and outside science? 3. Barriers: What are the major scientific, technological, institutional, sociological, and policy barriers to computer-mediated scientific knowledge discovery in the open online environment within the scientific community? What needs to be known and studied about each of these barriers to help achieve the opportunities for interdisciplinary science and complex problem solving? 4. Range of Options: Based on the results obtained in response to items 1-3, define a range of options that can be used by the sponsors of the project, as well as other similar organizations, to obtain and promote a better understanding of the computer-mediated scientific knowledge discovery processes and mechanisms for openly available data and information online across the scientific domains. The objective of defining these options is to improve the activities of the sponsors (and other similar organizations) and the activities of researchers that they fund externally in this emerging research area. The Future of Scientific Knowledge Discovery in Open Networked Environments: Summary of a Workshop summarizes the responses to these questions and tasks at hand.