%0 Book %A National Research Council %E Michaels, Sarah %E Shouse, Andrew W. %E Schweingruber, Heidi A. %T Ready, Set, SCIENCE!: Putting Research to Work in K-8 Science Classrooms %@ 978-0-309-10614-6 %D 2008 %U https://nap.nationalacademies.org/catalog/11882/ready-set-science-putting-research-to-work-in-k-8 %> https://nap.nationalacademies.org/catalog/11882/ready-set-science-putting-research-to-work-in-k-8 %I The National Academies Press %C Washington, DC %G English %K Education %P 220 %X What types of instructional experiences help K-8 students learn science with understanding? What do science educators, teachers, teacher leaders, science specialists, professional development staff, curriculum designers, and school administrators need to know to create and support such experiences? Ready, Set, Science! guides the way with an account of the groundbreaking and comprehensive synthesis of research into teaching and learning science in kindergarten through eighth grade. Based on the recently released National Research Council report Taking Science to School: Learning and Teaching Science in Grades K-8, this book summarizes a rich body of findings from the learning sciences and builds detailed cases of science educators at work to make the implications of research clear, accessible, and stimulating for a broad range of science educators. Ready, Set, Science! is filled with classroom case studies that bring to life the research findings and help readers to replicate success. Most of these stories are based on real classroom experiences that illustrate the complexities that teachers grapple with every day. They show how teachers work to select and design rigorous and engaging instructional tasks, manage classrooms, orchestrate productive discussions with culturally and linguistically diverse groups of students, and help students make their thinking visible using a variety of representational tools. This book will be an essential resource for science education practitioners and contains information that will be extremely useful to everyone �including parents �directly or indirectly involved in the teaching of science. %0 Book %A National Academies of Sciences, Engineering, and Medicine %E Kober, Nancy %E Carlone, Heidi %E Davis, Elizabeth A. %E Dominguez, Ximena %E Manz, Eve %E Zembal-Saul, Carla %E Stephens, Amy %E Schweingruber, Heidi %T Rise and Thrive with Science: Teaching PK-5 Science and Engineering %@ 978-0-309-69821-4 %D 2023 %U https://nap.nationalacademies.org/catalog/26853/rise-and-thrive-with-science-teaching-pk-5-science-and %> https://nap.nationalacademies.org/catalog/26853/rise-and-thrive-with-science-teaching-pk-5-science-and %I The National Academies Press %C Washington, DC %G English %K Education %P 222 %X Research shows that that children learn science and engineering subjects best by engaging from an early age in the kinds of practices used by real scientists and engineers. By doing science and engineering, children not only develop and refine their understanding of the core ideas and crosscutting concepts of these disciplines, but can also be empowered to use their growing understanding to make sense of questions and problems relevant to them. This approach can make learning more meaningful, equitable, and lasting. Using cases and shorter examples, Rise and Thrive with Science shows what high-quality teaching and learning in science and engineering can look like for preschool and elementary school children. Through analyses of these examples and summaries of research findings, the guide points out the key elements of a coherent, research-grounded approach to teaching and learning in science and engineering. This guide also discusses the kinds of support that educators need to implement effective and equitable instruction for all children. This book will provide inspiration for practitioners at the preschool and elementary levels to try new strategies for science and engineering education, whatever their level of experience. Rise and Thrive with Science will be an essential guide for teachers as they organize instruction to enable young children to carry out their own science investigations and engineering design projects, determine the kinds of instruction that lead to meaningful learning, and try to engage every one of their students. %0 Book %A Transportation Research Board %A National Academies of Sciences, Engineering, and Medicine %T Test Methods for Evaluating Field Performance of RWIS Sensors %D 2006 %U https://nap.nationalacademies.org/catalog/23262/test-methods-for-evaluating-field-performance-of-rwis-sensors %> https://nap.nationalacademies.org/catalog/23262/test-methods-for-evaluating-field-performance-of-rwis-sensors %I The National Academies Press %C Washington, DC %G English %K Transportation and Infrastructure %P 0 %X TRB's National Cooperative Highway Research Program (NCHRP) Web-Only Document 87: Test Methods for Evaluating Field Performance of Road Weather Information System (RWIS) Sensors explores field testing of environmental sensor stations (ESS) sensors in order to evaluate if a sensor is providing an accurate representation of actual conditions at the installed site. The procedures contained in this document define the equipment and describe the procedures that state, county, and city personnel can use to measure sensor parameters and evaluate sensors.A slide presentation on the Training for Field Test Procedures for Environmental Sensor Stations program is available in PowerPoint and Adobe Acrobat formats.PowerPoint Formatted SlidesAdobe Acrobat Formatted Slides %0 Book %A National Research Council %E Wilson, Mark R. %E Bertenthal, Meryl W. %T Systems for State Science Assessment %@ 978-0-309-09662-1 %D 2006 %U https://nap.nationalacademies.org/catalog/11312/systems-for-state-science-assessment %> https://nap.nationalacademies.org/catalog/11312/systems-for-state-science-assessment %I The National Academies Press %C Washington, DC %G English %K Education %P 248 %X In response to the No Child Left Behind Act of 2001 (NCLB), Systems for State Science Assessment explores the ideas and tools that are needed to assess science learning at the state level. This book provides a detailed examination of K-12 science assessment: looking specifically at what should be measured and how to measure it. Along with reading and mathematics, the testing of science is a key component of NCLB—it is part of the national effort to establish challenging academic content standards and develop the tools to measure student progress toward higher achievement. The book will be a critical resource for states that are designing and implementing science assessments to meet the 2007-2008 requirements of NCLB. In addition to offering important information for states, Systems for State Science Assessment provides policy makers, local schools, teachers, scientists, and parents with a broad view of the role of testing and assessment in science education. %0 Book %A National Academies of Sciences, Engineering, and Medicine %T Oil in the Sea IV: Inputs, Fates, and Effects %@ 978-0-309-27429-6 %D 2022 %U https://nap.nationalacademies.org/catalog/26410/oil-in-the-sea-iv-inputs-fates-and-effects %> https://nap.nationalacademies.org/catalog/26410/oil-in-the-sea-iv-inputs-fates-and-effects %I The National Academies Press %C Washington, DC %G English %K Environment and Environmental Studies %K Earth Sciences %P 516 %X Oil and natural gas represent more than 50 percent of the worldwide energy supply, with high energy demand driven by population growth and improving standards of living. Despite significant progress in reducing the amount of oil in the sea from consumption, exploration, transportation, and production, risks remain. This report, the fourth in a series, documents the current state-of-knowledge on inputs, fates and effects of oil in the sea, reflecting almost 20 additional years of research, including long-term effects from spills such as the Exxon Valdez and a decade-long boom in oil spill science research following the Deepwater Horizon oil spill. The report finds that land-based sources of oil are the biggest input of oil to the sea, far outweighing other sources, and it also notes that the effects of chronic inputs on the marine environment, such as land-based runoff, are very different than that from an acute input, such as a spill. Steps to prevent chronic land-based oil inputs include reducing gasoline vehicle usage, improving fuel efficiency, increasing usage of electric vehicles, replacing older vehicles. The report identifies research gaps and provides specific recommendations aimed at preventing future accidental spills and ensuring oil spill responders are equipped with the best response tools and information to limit oil’s impact on the marine environment. %0 Book %A National Research Council %E Duschl, Richard A. %E Schweingruber, Heidi A. %E Shouse, Andrew W. %T Taking Science to School: Learning and Teaching Science in Grades K-8 %@ 978-0-309-10205-6 %D 2007 %U https://nap.nationalacademies.org/catalog/11625/taking-science-to-school-learning-and-teaching-science-in-grades %> https://nap.nationalacademies.org/catalog/11625/taking-science-to-school-learning-and-teaching-science-in-grades %I The National Academies Press %C Washington, DC %G English %K Education %P 404 %X What is science for a child? How do children learn about science and how to do science? Drawing on a vast array of work from neuroscience to classroom observation, Taking Science to School provides a comprehensive picture of what we know about teaching and learning science from kindergarten through eighth grade. By looking at a broad range of questions, this book provides a basic foundation for guiding science teaching and supporting students in their learning. Taking Science to School answers such questions as: When do children begin to learn about science? Are there critical stages in a child's development of such scientific concepts as mass or animate objects? What role does nonschool learning play in children's knowledge of science? How can science education capitalize on children's natural curiosity? What are the best tasks for books, lectures, and hands-on learning? How can teachers be taught to teach science? The book also provides a detailed examination of how we know what we know about children's learning of science—about the role of research and evidence. This book will be an essential resource for everyone involved in K-8 science education—teachers, principals, boards of education, teacher education providers and accreditors, education researchers, federal education agencies, and state and federal policy makers. It will also be a useful guide for parents and others interested in how children learn.