@BOOK{NAP author = "National Research Council", title = "Toward an Integrated Arctic Observing Network", isbn = "978-0-309-10052-6", abstract = "Observable changes with regional and global implications, such as warming temperatures and reduced sea ice, are taking place across the Arctic. However, the record of Arctic observations suffers from incomplete geographic coverage and limited duration, and measurements are not well coordinated. This makes it difficult to comprehensively describe current conditions in the Arctic, let alone understand the changes that are underway or their connections to the rest of the Earth system. \n\nThe U.S. National Science Foundation asked for guidance to help design a pan-arctic observing network. This book outlines the potential scope, composition, and implementation strategy for an arctic observing network. Such an integrated, complete, and multidisciplinary environmental observing network will improve society's understanding of and ability to respond to ongoing systemic changes in the Arctic and its capability to anticipate, predict, and respond to future change both in the Arctic and around the globe. The network would build on and enhance existing national and international efforts and deliver easily accessible, complete, reliable, timely, long-term, pan-arctic observations. Because many potential components of the network already exist or are being planned, and because of the surge of activity during the International Polar Year, there is an immediate opportunity for major progress.", url = "https://nap.nationalacademies.org/catalog/11607/toward-an-integrated-arctic-observing-network", year = 2006, publisher = "The National Academies Press", address = "Washington, DC" } @BOOK{NAP author = "National Research Council", title = "The Arctic in the Anthropocene: Emerging Research Questions", isbn = "978-0-309-30183-1", abstract = "Once ice-bound, difficult to access, and largely ignored by the rest of the world, the Arctic is now front and center in the midst of many important questions facing the world today. Our daily weather, what we eat, and coastal flooding are all interconnected with the future of the Arctic. The year 2012 was an astounding year for Arctic change. The summer sea ice volume smashed previous records, losing approximately 75 percent of its value since 1980 and half of its areal coverage. Multiple records were also broken when 97 percent of Greenland's surface experienced melt conditions in 2012, the largest melt extent in the satellite era. Receding ice caps in Arctic Canada are now exposing land surfaces that have been continuously ice covered for more than 40,000 years.\nWhat happens in the Arctic has far-reaching implications around the world. Loss of snow and ice exacerbates climate change and is the largest contributor to expected global sea level rise during the next century. Ten percent of the world's fish catches comes from Arctic and sub-Arctic waters. The U.S. Geological Survey estimated that up to 13 percent of the world's remaining oil reserves are in the Arctic. The geologic history of the Arctic may hold vital clues about massive volcanic eruptions and the consequent release of massive amount of coal fly ash that is thought to have caused mass extinctions in the distant past. How will these changes affect the rest of Earth? What research should we invest in to best understand this previously hidden land, manage impacts of change on Arctic communities, and cooperate with researchers from other nations?\nThe Arctic in the Anthropocene reviews research questions previously identified by Arctic researchers, and then highlights the new questions that have emerged in the wake of and expectation of further rapid Arctic change, as well as new capabilities to address them. This report is meant to guide future directions in U.S. Arctic research so that research is targeted on critical scientific and societal questions and conducted as effectively as possible. The Arctic in the Anthropocene identifies both a disciplinary and a cross-cutting research strategy for the next 10 to 20 years, and evaluates infrastructure needs and collaboration opportunities. The climate, biology, and society in the Arctic are changing in rapid, complex, and interactive ways. Understanding the Arctic system has never been more critical; thus, Arctic research has never been more important. This report will be a resource for institutions, funders, policy makers, and students. Written in an engaging style, The Arctic in the Anthropocene paints a picture of one of the last unknown places on this planet, and communicates the excitement and importance of the discoveries and challenges that lie ahead.", url = "https://nap.nationalacademies.org/catalog/18726/the-arctic-in-the-anthropocene-emerging-research-questions", year = 2014, publisher = "The National Academies Press", address = "Washington, DC" } @BOOK{NAP author = "Transportation Research Board and National Research Council", title = "Responding to Oil Spills in the U.S. Arctic Marine Environment", isbn = "978-0-309-29886-5", abstract = "U.S. Arctic waters north of the Bering Strait and west of the Canadian border encompass a vast area that is usually ice covered for much of the year, but is increasingly experiencing longer periods and larger areas of open water due to climate change. Sparsely inhabited with a wide variety of ecosystems found nowhere else, this region is vulnerable to damage from human activities. As oil and gas, shipping, and tourism activities increase, the possibilities of an oil spill also increase. How can we best prepare to respond to such an event in this challenging environment?\nResponding to Oil Spills in the U.S. Arctic Marine Environment reviews the current state of the science regarding oil spill response and environmental assessment in the Arctic region north of the Bering Strait, with emphasis on the potential impacts in U.S. waters. This report describes the unique ecosystems and environment of the Arctic and makes recommendations to provide an effective response effort in these challenging conditions. According to Responding to Oil Spills in the U.S. Arctic Marine Environment, a full range of proven oil spill response technologies is needed in order to minimize the impacts on people and sensitive ecosystems. This report identifies key oil spill research priorities, critical data and monitoring needs, mitigation strategies, and important operational and logistical issues.\nThe Arctic acts as an integrating, regulating, and mediating component of the physical, atmospheric and cryospheric systems that govern life on Earth. Not only does the Arctic serve as regulator of many of the Earth's large-scale systems and processes, but it is also an area where choices made have substantial impact on life and choices everywhere on planet Earth. This report's recommendations will assist environmentalists, industry, state and local policymakers, and anyone interested in the future of this special region to preserve and protect it from damaging oil spills.", url = "https://nap.nationalacademies.org/catalog/18625/responding-to-oil-spills-in-the-us-arctic-marine-environment", year = 2014, publisher = "The National Academies Press", address = "Washington, DC" } @BOOK{NAP author = "National Research Council", title = "Seasonal to Decadal Predictions of Arctic Sea Ice: Challenges and Strategies", isbn = "978-0-309-26526-3", abstract = "Recent well documented reductions in the thickness and extent of Arctic sea ice cover, which can be linked to the warming climate, are affecting the global climate system and are also affecting the global economic system as marine access to the Arctic region and natural resource development increase. Satellite data show that during each of the past six summers, sea ice cover has shrunk to its smallest in three decades. The composition of the ice is also changing, now containing a higher fraction of thin first-year ice instead of thicker multi-year ice.\nUnderstanding and projecting future sea ice conditions is important to a growing number of stakeholders, including local populations, natural resource industries, fishing communities, commercial shippers, marine tourism operators, national security organizations, regulatory agencies, and the scientific research community. However, gaps in understanding the interactions between Arctic sea ice, oceans, and the atmosphere, along with an increasing rate of change in the nature and quantity of sea ice, is hampering accurate predictions. Although modeling has steadily improved, projections by every major modeling group failed to predict the record breaking drop in summer sea ice extent in September 2012.\nEstablishing sustained communication between the user, modeling, and observation communities could help reveal gaps in understanding, help balance the needs and expectations of different stakeholders, and ensure that resources are allocated to address the most pressing sea ice data needs. Seasonal-to-Decadal Predictions of Arctic Sea Ice: Challenges and Strategies explores these topics.", url = "https://nap.nationalacademies.org/catalog/13515/seasonal-to-decadal-predictions-of-arctic-sea-ice-challenges-and", year = 2012, publisher = "The National Academies Press", address = "Washington, DC" } @BOOK{NAP author = "National Research Council", title = "Opportunities to Use Remote Sensing in Understanding Permafrost and Related Ecological Characteristics: Report of a Workshop", isbn = "978-0-309-30121-3", abstract = "Permafrost is a thermal condition -- its formation, persistence and disappearance are highly dependent on climate. General circulation models predict that, for a doubling of atmospheric concentrations of carbon dioxide, mean annual air temperatures may rise up to several degrees over much of the Arctic. In the discontinuous permafrost region, where ground temperatures are within 1-2 degrees of thawing, permafrost will likely ultimately disappear as a result of ground thermal changes associated with global climate warming. Where ground ice contents are high, permafrost degradation will have associated physical impacts. Permafrost thaw stands to have wide-ranging impacts, such as the draining and drying of the tundra, erosion of riverbanks and coastline, and destabilization of infrastructure (roads, airports, buildings, etc.), and including potential implications for ecosystems and the carbon cycle in the high latitudes.\nOpportunities to Use Remote Sensing in Understanding Permafrost and Related Ecological Characteristics is the summary of a workshop convened by the National Research Council to explore opportunities for using remote sensing to advance our understanding of permafrost status and trends and the impacts of permafrost change, especially on ecosystems and the carbon cycle in the high latitudes. The workshop brought together experts from the remote sensing community with permafrost and ecosystem scientists. The workshop discussions articulated gaps in current understanding and potential opportunities to harness remote sensing techniques to better understand permafrost, permafrost change, and implications for ecosystems in permafrost areas. This report addresses questions such as how remote sensing might be used in innovative ways, how it might enhance our ability to document long-term trends, and whether it is possible to integrate remote sensing products with the ground-based observations and assimilate them into advanced Arctic system models. Additionally, the report considers the expectations of the quality and spatial and temporal resolution possible through such approaches, and the prototype sensors that are available that could be used for detailed ground calibration of permafrost\/high latitude carbon cycle studies.", url = "https://nap.nationalacademies.org/catalog/18711/opportunities-to-use-remote-sensing-in-understanding-permafrost-and-related-ecological-characteristics", year = 2014, publisher = "The National Academies Press", address = "Washington, DC" }